Earth science

Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four spheres, namely biosphere, hydrosphere, atmosphere, and geosphere. Earth science can be considered to be a branch of planetary science, but with a much older history. Earth science encompasses four main branches of study, the lithosphere, the hydrosphere, the atmosphere, and the biosphere, each of which is further broken down into more specialized fields.

The rocky side of a mountain creek in Costa Rica

There are both reductionist and holistic approaches to Earth sciences. It is also the study of Earth and its neighbors in space. Some Earth scientists use their knowledge of the planet to locate and develop energy and mineral resources. Others study the impact of human activity on Earth's environment, and design methods to protect the planet. Some use their knowledge about Earth processes such as volcanoes, earthquakes, and hurricanes to plan communities that will not expose people to these dangerous events.

Earth sciences can include the study of geology, the lithosphere, and the large-scale structure of Earth's interior, as well as the atmosphere, hydrosphere, and biosphere. Typically, Earth scientists use tools from geology, chronology, physics, chemistry, geography, biology, and mathematics to build a quantitative understanding of how Earth works and evolves. For example, meteorologists study the weather and watch for dangerous storms. Hydrologists examine water and warn of floods. Seismologists study earthquakes and try to understand where they will strike. Geologists study rocks and help to locate useful minerals. Earth scientists often work in the field—perhaps climbing mountains, exploring the seabed, crawling through caves, or wading in swamps. They measure and collect samples (such as rocks or river water), then record their findings on charts and maps.

Fields of study

The following fields of science are generally categorized within the Earth sciences:

Earth's interior

A volcanic eruption is the release of stored energy from below Earth's surface.[8]

Plate tectonics, mountain ranges, volcanoes, and earthquakes are geological phenomena that can be explained in terms of physical and chemical processes in the Earth's crust.[9]

Beneath the Earth's crust lies the mantle which is heated by the radioactive decay of heavy elements. The mantle is not quite solid and consists of magma which is in a state of semi-perpetual convection. This convection process causes the lithospheric plates to move, albeit slowly. The resulting process is known as plate tectonics.[10][11][12][13]

Plate tectonics might be thought of as the process by which the Earth is resurfaced. As the result of seafloor spreading, new crust and lithosphere is created by the flow of magma from the mantle to the near surface, through fissures, where it cools and solidifies. Through subduction, oceanic crust and lithosphere returns to the convecting mantle.[11][13][14]

Areas of the crust where new crust is created are called divergent boundaries, those where it is brought back into the Earth are convergent boundaries and those where plates slide past each other, but no new lithospheric material is created or destroyed, are referred to as transform (or conservative) boundaries[11][13][15] Earthquakes result from the movement of the lithospheric plates, and they often occur near convergent boundaries where parts of the crust are forced into the earth as part of subduction.[16]

Volcanoes result primarily from the melting of subducted crust material. Crust material that is forced into the asthenosphere melts, and some portion of the melted material becomes light enough to rise to the surface—giving birth to volcanoes.[11][16]

Earth's atmosphere

The magnetosphere shields the surface of Earth from the charged particles of the solar wind.
(image not to scale.)

The troposphere, stratosphere, mesosphere, thermosphere, and exosphere are the five layers which make up Earth's atmosphere. 75% of the gases in the atmosphere are located within the troposphere, the lowest layer. In all, the atmosphere is made up of about 78.0% nitrogen, 20.9% oxygen, and 0.92% argon, and small amounts of other gases including CO2 and water vapor.[17] Water vapor and CO2 allow the Earth's atmosphere to catch and hold the Sun's energy through the greenhouse effect.[18] This allows Earth's surface to be warm enough to have liquid water and support life. In addition to storing heat, the atmosphere also protects living organisms by shielding the Earth's surface from cosmic rays—which are often incorrectly thought to be deflected by the magnetic field.[19] The magnetic field—created by the internal motions of the core—produces the magnetosphere which protects Earth's atmosphere from the solar wind.[20] As the Earth is 4.5 billion years old,[21] it would have lost its atmosphere by now if there were no protective magnetosphere.

Earth's magnetic field

An electromagnet is a magnet that is created by an electric current.[22] The Earth has a solid iron inner core surrounded by a fluid outer core that convects;[23] therefore, Earth is an electromagnet. The motion of fluid convection sustains the Earth's magnetic field.[23][24]

The magnetic field is also very important because some birds and insects use it to navigate over long distances, using the magnetized iron crystals found in their skin. The most important function of Earth's magnetic field is protecting its organisms. High energy protons are deflected along with electrons in the solar wind. If organisms were directly exposed to these particles it would be lethal.[25] For the consistency of a magnetic field to remain constant there must be an attractive magnetic field. If the motion of a magnetic field changes then every aspect of it does as well. It indicates a force that is proportional to the velocity of a moving charge.[26]

Magnetic flux density is generally measured in teslas. Another unit sometimes used is the gauss (G). 1 G is equivalent to 10−4 T (or 1 mG = 0.1µT).

In the image above the first example their anti-parallel currents with cause them to repel. In the second example they are parallel currents which cause attraction.

The Lorentz Force Law

The force exerted by a magnetic field on an object can be defined by the Lorentz Law.

where

  • F is the force
  • q is the object's electric charge
  • E is the electric field
  • v is the object's velocity
  • B is the magnetic field strength.

The electromagnetic force holds atoms and molecules together. In fact, at this scale the forces of electric attraction and repulsion of electric charges are so dominant over the other three fundamental forces that they can be considered to be negligible as determiners of atomic and molecular structure.[27]

The Lorentz Force Law was named after Dutch physicist Hendrik Antoon Lorentz. He was the first to formulate this equation. Lorentz theorized that atoms might consist of charged particles and suggested that the oscillations of these charged particles were the source of light.[28]

Changing magnetic field through a coil of wire therefore must induce an EMF the coil which in turn causes current to flow.[29]

Methodology

Methodologies vary depending on the nature of the subjects being studied. Studies typically fall into one of three categories: observational, experimental, or theoretical. Earth scientists often conduct sophisticated computer analysis or visit an interesting location to study earth phenomena (e.g. Antarctica or hot spot island chains).

A foundational idea in Earth science is the notion of uniformitarianism, which states that "ancient geologic features are interpreted by understanding active processes that are readily observed." In other words, any geologic processes at work in the present have operated in the same ways throughout geologic time. This enables those who study Earth's history to apply knowledge of how Earth processes operate in the present to gain insight into how the planet has evolved and changed throughout long history.

Earth's spheres

Earth science generally recognizes four spheres, the lithosphere, the hydrosphere, the atmosphere, and the biosphere;[30] these correspond to rocks, water, air and life. Also included by some are the cryosphere (corresponding to ice) as a distinct portion of the hydrosphere and the pedosphere (corresponding to soil) as an active and intermixed sphere.

Earth science breakup

See also

References

  1. Adams & Lambert 2006, p. 20
  2. Smith & Pun 2006, p. 5
  3. "WordNet Search – 3.1". princeton.edu.
  4. "NOAA National Ocean Service Education: Global Positioning Tutorial". noaa.gov.
  5. Elissa Levine, 2001, The Pedosphere As A Hub broken link?
  6. Gardiner, Duane T. "Lecture 1 Chapter 1 Why Study Soils?". ENV320: Soil Science Lecture Notes. Texas A&M University-Kingsville. Archived from the original on 2018-02-09. Retrieved 2019-01-07.
  7. Craig, Kendall. "Hydrology of the Watershed".
  8. Encyclopedia of Volcanoes, Academic Press, London, 2000
  9. "Earth's Energy Budget". ou.edu.
  10. Simison 2007, paragraph 7
  11. Adams & Lambert 2006, pp. 94–95, 100, 102
  12. Smith & Pun 2006, pp. 13–17, 218, G-6
  13. Oldroyd 2006, pp. 101, 103, 104
  14. Smith & Pun 2006, p. 327
  15. Smith & Pun 2006, p. 331
  16. Smith & Pun 2006, pp. 325–26, 329
  17. Adams & Lambert 2006, pp. 107–08
  18. American Heritage, p. 770
  19. Parker, Eugene (March 2006), Shielding Space (PDF), Scientific American
  20. Adams & Lambert 2006, pp. 21–22
  21. Smith & Pun 2006, p. 183
  22. American Heritage, p. 576
  23. Oldroyd 2006, p. 160
  24. Demorest, Paul (2001-05-21). "Dynamo Theory and Earth's Magnetic Field" (PDF). Archived from the original (PDF) on February 21, 2007. Retrieved 2007-11-17.
  25. Christensen, Norman L. (2019). The Environment and you. Lissa Leege, Justin St. Juliana (Third ed.). NY, NY. ISBN 978-0-13-464605-3. OCLC 1007498917.
  26. Hughes, Scott (10 March 2005). "Massachusetts Institute of Technology Department of Physics 8.022 Spring 2004 Lecture 10: Magnetic force; Magnetic fields; Ampere's law" (PDF).
  27. "Fundamental Forces". hyperphysics.phy-astr.gsu.edu. Retrieved 2021-05-18.
  28. "The Nobel Prize in Physics 1902". NobelPrize.org. Retrieved 2021-05-18.
  29. "Introduction to Magnetism and Induced Currents". www.rpi.edu. Retrieved 2021-05-18.
  30. Earth's Spheres Archived August 31, 2007, at the Wayback Machine. ©1997–2000. Wheeling Jesuit University/NASA Classroom of the Future. Retrieved November 11, 2007.

Sources

  • Adams, Simon; Lambert, David (2006). Earth Science: An illustrated guide to science. New York, NY: Chelsea House. ISBN 978-0-8160-6164-8.
  • Joseph P. Pickett (executive editor) (1992). American Heritage dictionary of the English language (4th ed.). Boston, MA: Houghton Mifflin Company. ISBN 978-0-395-82517-4. {{cite book}}: |author= has generic name (help)
  • Simison, W. Brian (2007-02-05). "The mechanism behind plate tectonics". Retrieved 2007-11-17.
  • Smith, Gary A.; Pun, Aurora (2006). How Does the Earth Work? Physical Geology and the Process of Science. Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 978-0-13-034129-7.
  • Oldroyd, David (2006). Earth Cycles: A historical perspective. Westport, CT: Greenwood Press. ISBN 978-0-313-33229-6.

Further reading

  • Allaby M., 2008. Dictionary of Earth Sciences, Oxford University Press, ISBN 978-0-19-921194-4
  • Korvin G., 1998. Fractal Models in the Earth Sciences, Elsvier, ISBN 978-0-444-88907-2
  • "Earth's Energy Budget". Oklahoma Climatological Survey. 1996–2004. Retrieved 2007-11-17.
  • Miller, George A.; Christiane Fellbaum; and Randee Tengi; and Pamela Wakefield; and Rajesh Poddar; and Helen Langone; Benjamin Haskell (2006). "WordNet Search 3.0". WordNet a lexical database for the English language. Princeton, NJ: Princeton University/Cognitive Science Laboratory. Retrieved 2007-11-10.
  • "NOAA National Ocean Service Education: Geodesy". National Oceanic and Atmospheric Administration. 2005-03-08. Retrieved 2007-11-17.
  • Reed, Christina (2008). Earth Science: Decade by Decade. New York, NY: Facts on File. ISBN 978-0-8160-5533-3.
  • Tarbuck E. J., Lutgens F. K., and Tasa D., 2002. Earth Science, Prentice Hall, ISBN 978-0-13-035390-0
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.