Viewing a single comment thread. View all comments

trajo123 t1_jdscn2h wrote

>Apparently it cannot solve coding problems which require any amount of thinking.

Not yet, and this is not surprising.

First, GPT-4 can solve many coding problems on the first try. Yes, these small programs may be simple, but how many developers can write code that directly runs? Maybe in 1-2 languages, and even then only in the problem domain that they are very familiar with. Also, since LLMs can write code in more languages and frameworks than most developers, LLMs can actually solve more coding problems than most of the programmer out there... So LLMs already contain vast amounts of "knowledge" and "intuitive ability". But intuition is not enough to solve larger or more complex problems.

So, finally, coming to the thinking part. What challenging problems can be solved by humans by "off-the-cuff"? We also, scribble, draw diagrams, try out a few things, see if things run and work as expected, do web searches, talk to stake holders, sleep on the problem, etc. In other words, in any non-trivial problem solving, we also rely heavily on feedback between our brains and the external world.

Frankly, I don't see this as a problem of LLMs, they can be effectively used as foundation models. One could have another layer, on top of LLMs to solve problems end-to-end. For example one could build a meta-model, where multiple instances work together in an actor-critic fashion. The actor is the one interacting with the user, the critic can be prompted (and perhaps) fine-tuned with with general problem solving strategies, with the main prompt being to second-guess and try to find flaws in the reasoning of the actor. Just as reinforcement learning (RL) was used to improve the general usability of ChatGPT, RL could be used to fine-tune such a meta-model (or maybe just fine-tune the critic). ...thinking fast, thinking slow

P.S. I think LLMs also need some sort of memory, so that not everything needs to be in the prompt to work on a problem.

6