Submitted by olegranmo t3_102bm7w in MachineLearning
​
Logical Word Embedding with Tsetlin Machine Autoencoder
Here is a new self-supervised machine learning approach that captures word meaning with concise logical expressions. The logical expressions consist of contextual words like “black,” “cup,” and “hot” to define other words like “coffee,” thus being human-understandable. I raise the question in the heading because our logical embedding performs competitively on several intrinsic and extrinsic benchmarks, matching pre-trained GLoVe embeddings on six downstream classification tasks. You find the paper here: https://arxiv.org/abs/2301.00709, an implementation of the Tsetlin Machine Autoencoder here: https://github.com/cair/tmu, and a simple word embedding demo here: https://github.com/cair/tmu/blob/main/examples/IMDbAutoEncoderDemo.py
Mental-Swordfish7129 t1_j2s6xlg wrote
Interesting. I've had success encoding the details of words (anything, really) using high-dimensional binary vectors. I use about 2000 bits for each code. It's usually plenty as it is often difficult to find 2000 relevant binary features of a word. This is very efficient for my model and allows for similarity metrics and instantiates a truly enormous latent space.