Viewing a single comment thread. View all comments

Hrmbee OP t1_jdbkypv wrote

>Scientists at the University of British Columbia announced on Wednesday that they had developed a new silica-based material with ability to absorb a wider range of the harmful chemicals, and new tools to break them apart them. > >“This is very exciting because we can target these difficult-to-break chemical bonds – and break them for good,” said researcher Madjid Mohseni, who focuses on water quality and water treatment. > >The chemicals, also known as PFAS (per-and polyfluoroalkyl substances) are used for non-stick or stain-resistant surfaces, including clothing, cookware, stain repellents and firefighting foam. But they are also notoriously difficult to break down naturally, giving them the name “forever chemicals”. > >... > >Current technologies often use activated carbon to filter out the chemicals, but are largely only able to target what researchers call the “long-chain” versions of PFAS – those with more than six carbon bonds. Following recent bans, however, industry has shifted to creating ‘short chain’ iterations of the chemical. > >Those versions “are equally as toxic and they stay in the water better. And as a result, current technologies like activated carbon really aren’t as effective,” said Mohseni. > >Most household water filters use activated carbon – and as a result, miss a wide range of possibly harmful chemicals. > >His team also found that the current filters concentrate the absorbed chemicals, creating a “highly toxic” form of waste that consumers throw into the garbage. > >Such filters “are not addressing the problem. We’re just temporarily fixing it and letting those chemicals stay in the environment,” he said. > >To combat the deficiencies in combatting PFAS, the team has developed a new silicate absorbing material that captures a far wider range of chemicals. The thin material can also be reused repeatedly. > >To destroy the chemicals, Mohseni says researchers use either electrochemical or photochemical processes to break the carbon-fluorine bond. The team first published their findings in the journal Chemosphere.

This is some good news as far as PFASes are concerned, though ultimately we do need to limit their broader use in our manufacturing processes. Allowing manufacturers to jump from one compound to another to avoid regulation seems to be a major failing in our current regulatory systems.


Polymathy1 t1_jdbrr4b wrote

That failing has been frequently exploited.

BPA was just replaced with other BisPhenol compounds.