basmwklz OP t1_j3kixdx wrote

Abstract: >Little is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting). We found that fasting enhanced K-bhb in a variety of proteins including histone H3. ChIP-seq experiments showed that K9 beta-hydroxybutyrylation of H3 (H3K9-bhb) was significantly enriched by fasting on more than 8000 DNA loci. Transcriptomic analysis showed that H3K9-bhb on enhancers and promoters correlated with active gene expression. One of the most enriched functional annotations both at the epigenetic and transcriptional level was “circadian rhythms''. Indeed, we found that the diurnal oscillation of specific transcripts was modulated by fasting at distinct zeitgeber times both in the cortex and suprachiasmatic nucleus. Moreover, specific changes in locomotor activity daily features were observed during re-feeding after 48-h fasting. Thus, our results suggest that fasting remarkably impinges on the cerebral cortex transcriptional and epigenetic landscape, and BHB acts as a powerful epigenetic molecule in the brain through direct and specific histone marks remodeling in neural tissue cells.


basmwklz OP t1_j2ll0v1 wrote

Abstract: >Elevated body mass index (BMI) is heritable and associated with many health conditions that impact morbidity and mortality. The study of the genetic association of BMI across a broad range of common disease conditions offers the opportunity to extend current knowledge regarding the breadth and depth of adiposity-related diseases. We identify 906 (364 novel) and 41 (6 novel) genome-wide significant loci for BMI among participants of European (N~1.1 million) and African (N~100,000) ancestry, respectively. Using a BMI genetic risk score including 2446 variants, 316 diagnoses are associated in the Million Veteran Program, with 96.5% showing increased risk. A co-morbidity network analysis reveals seven disease communities containing multiple interconnected diseases associated with BMI as well as extensive connections across communities. Mendelian randomization analysis confirms numerous phenotypes across a breadth of organ systems, including conditions of the circulatory (heart failure, ischemic heart disease, atrial fibrillation), genitourinary (chronic renal failure), respiratory (respiratory failure, asthma), musculoskeletal and dermatologic systems that are deeply interconnected within and across the disease communities. This work shows that the complex genetic architecture of BMI associates with a broad range of major health conditions, supporting the need for comprehensive approaches to prevent and treat obesity.


basmwklz OP t1_ix2s16y wrote

Abstract: >Food cues during fasting elicit Pavlovian conditioning to adapt for anticipated food intake. However, whether the olfactory system is involved in metabolic adaptations remains elusive. Here we show that food-odor perception promotes lipid metabolism in male mice. During fasting, food-odor stimulation is sufficient to increase serum free fatty acids via adipose tissue lipolysis in an olfactory-memory-dependent manner, which is mediated by the central melanocortin and sympathetic nervous systems. Additionally, stimulation with a food odor prior to refeeding leads to enhanced whole-body lipid utilization, which is associated with increased sensitivity of the central agouti-related peptide system, reduced sympathetic activity and peripheral tissue-specific metabolic alterations, such as an increase in gastrointestinal lipid absorption and hepatic cholesterol turnover. Finally, we show that intermittent fasting coupled with food-odor stimulation improves glycemic control and prevents insulin resistance in diet-induced obese mice. Thus, olfactory regulation is required for maintaining metabolic homeostasis in environments with either an energy deficit or energy surplus, which could be considered as part of dietary interventions against metabolic disorders.


basmwklz OP t1_ix2ls51 wrote



The application of cold exposure has emerged as an approach to enhance whole-body lipid catabolism. The global effect of cold exposure on the lipidome in humans has been reported with mixed results depending on intensity and duration of cold.


This secondary study was based on data from a previous randomized cross-over trial ( ID: NCT03012113). We performed sequential lipidomic profiling in serum during 120 min cold exposure of human volunteers. Next, the intracellular lipolysis was blocked in mice (eighteen 10-week-old male wild-type mice C57BL/6J) using a small-molecule inhibitor of adipose triglyceride lipase (ATGL; Atglistatin), and mice were exposed to cold for a similar duration. The quantitative lipidomic profiling was assessed in-depth using the Lipidyzer platform.


In humans, cold exposure gradually increased circulating free fatty acids reaching a maximum at 60 min, and transiently decreased total triacylglycerols (TAGs) only at 30 min. A broad range of TAG species was initially decreased, in particular unsaturated and polyunsaturated TAG species with ≤5 double bonds, while after 120 min a significant increase was observed for polyunsaturated TAG species with ≥6 double bonds in humans. The mechanistic study in mice revealed that the cold-induced increase in polyunsaturated TAGs was largely prevented by blocking adipose triglyceride lipase.


We interpret these findings as that cold exposure feeds thermogenic tissues with TAG-derived fatty acids for combustion, resulting in a decrease of circulating TAG species, followed by increased hepatic production of polyunsaturated TAG species induced by liberation of free fatty acids stemming from adipose tissue.


basmwklz OP t1_iw6aqnq wrote

Abstract: >Background: Typical vivarium temperatures (20-26°C) induce facultative thermogenesis in mice, a process attributable in part to uncoupling protein-1 (UCP1). The impact of modest changes in housing temperature on whole body and adipose tissue energetics in mice remains unclear. Here, we determined the effects of transitioning mice from 24°C to 30°C on total energy expenditure and adipose tissue protein signatures. Methods: C57BL/6J mice were housed at 24°C for two weeks and then either remained at 24°C (n=16 per group, 8M/8F) or were transitioned to 30°C (n=16 per group, 8M/8F) for 4 weeks. Total energy expenditure and its components were determined by indirect calorimetry. Interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) proteins were quantified by western blot and quantitative proteomics. Results: Transitioning from 24°C to 30°C reduced total energy expenditure in both male (-25%) and female (-16%) mice, which was attributable to 36% and 40% decreases in basal energy expenditure in males and females, respectively. Total iBAT UCP1 protein content was 50% lower at 30°C compared to 24°C, whereas iWAT UCP1 protein content was similar between conditions. iBAT UCP1 protein content remained 20-fold greater than iWAT at 30°C. 183 and 41 proteins were differentially expressed between 24°C and 30°C in iBAT and iWAT, respectively. 257 iWAT proteins differentially expressed between sexes at 30°C were not differentially expressed at 24°C. Summary: 30°C housing lowers total energy expenditure of mice when compared to an ambient temperature (24°C) that falls within the National Research Council's guidelines for housing laboratory mice. Lower iBAT UCP1 content accompanied chronic housing at 30°C. Further, housing temperature influences sexual dimorphism in the iWAT proteome. These data have implications regarding the optimization of preclinical models of human disease.


basmwklz OP t1_iw69yjy wrote

Abstract: >Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.


basmwklz OP t1_ivadwry wrote

Abstract: >Chronic calorie restriction (CR) results in lengthened lifespan and reduced disease risk. Many previous studies have implemented 30–40% calorie restriction to investigate these benefits. The goal of our study was to investigate the effects of calorie restriction, beginning at 4 months of age, on metabolic and physical changes induced by aging. Male C57BL/6NCrl calorie restricted and ad libitum fed control mice were obtained from the National Institute on Aging (NIA) and studied at 10, 18, 26, and 28 months of age to better understand the metabolic changes that occur in response to CR in middle age and advanced age. Food intake was measured in ad libitum fed controls to assess the true degree of CR (15%) in these mice. We found that 15% CR decreased body mass and liver triglyceride content, improved oral glucose clearance, and increased all limb grip strength in 10- and 18-month-old mice. Glucose clearance in ad libitum fed 26- and 28-month-old mice is enhanced relative to younger mice but was not further improved by CR. CR decreased basal insulin concentrations in all age groups and improved insulin sensitivity and rotarod time to fall in 28-month-old mice. The results of our study demonstrate that even a modest reduction (15%) in caloric intake may improve metabolic and physical health. Thus, moderate calorie restriction may be a dietary intervention to promote healthy aging with improved likelihood for adherence in human populations.


basmwklz OP t1_isiyk8i wrote

Abstract: >Metabolic-associated fatty liver disease (MAFLD) (previously known as nonalcoholic fatty liver disease (NAFLD)) is a disease with high worldwide prevalence, but with limited available therapeutic interventions. Autophagy is a cell survival mechanism for clearing excess lipids in hepatocytes and affects the occurrence and development of MAFLD. In addition, some studies have shown that magnesium deficiency is common in patients with obesity and metabolic syndrome. Magnesium supplementation can effectively improve metabolism-related diseases such as obesity and fatty liver. Our study successfully constructed a cellular model of MAFLD by 1 mM free fatty acid (FFA) intervention in LO2 cells for 24 h, and there was an increase in lipid accumulation in hepatocytes after FFA intervention. Magnesium supplementation was shown to reduce lipid deposition in hepatocytes induced by FFA, and Western blotting (WB) analysis showed that magnesium supplementation could downregulate the expression of Fasn and SREBP1 and increase the expression of LPL, suggesting that magnesium can reduce lipid accumulation by reducing lipid synthesis and increasing lipid oxidation. Magnesium supplementation could affect cellular lipid metabolism by activating the AMPK/mTOR pathway to stimulate autophagy. Our results identified a relationship between magnesium and lipid accumulation in hepatocytes and showed that magnesium supplementation reduced lipid deposition in hepatocytes by activating autophagy by activating the AMPK-mTOR pathway.


basmwklz OP t1_irlvyus wrote



A striking effect of old age is the involuntary loss of muscle mass and strength leading to sarcopenia and reduced physiological functions. However, effects of heavy-load exercise in older adults on diseases and functions as predicted by changes in muscle gene expression have been inadequately studied.


Thigh muscle global transcriptional activity (transcriptome) was analyzed in cohorts of older and younger adults before and after 12–13 weeks heavy-load strength exercise using Affymetrix microarrays. Three age groups, similarly trained, were compared: younger adults (age 24 ± 4 years), older adults of average age 70 years (Oslo cohort) and above 80 years (old BSU cohort). To increase statistical strength, one of the older cohorts was used for validation. Ingenuity Pathway analysis (IPA) was used to identify predicted biological effects of a gene set that changed expression after exercise, and Principal Component Analysis (PCA) was used to visualize differences in muscle gene expressen between cohorts and individual participants as well as overall changes upon exercise.


Younger adults, showed few transcriptome changes, but a marked, significant impact was observed in persons of average age 70 years and even more so in persons above 80 years. The 249 transcripts positively or negatively altered in both cohorts of older adults (q-value < 0.1) were submitted to gene set enrichment analysis using IPA. The transcripts predicted increase in several aspects of “vascularization and muscle contractions”, whereas functions associated with negative health effects were reduced, e.g., “Glucose metabolism disorder” and “Disorder of blood pressure”. Several genes that changed expression after intervention were confirmed at the genome level by containing single nucleotide variants associated with handgrip strength and muscle expression levels, e.g., CYP4B1 (p = 9.2E-20), NOTCH4 (p = 9.7E-8), and FZD4 (p = 5.3E-7). PCA of the 249 genes indicated a differential pattern of muscle gene expression in young and elderly. However, after exercise the expression patterns in both young and old BSU cohorts were changed in the same direction for the vast majority of participants.


The positive impact of heavy-load strength training on the transcriptome increased markedly with age. The identified molecular changes translate to improved vascularization and muscular strength, suggesting highly beneficial health effects for older adults.


basmwklz OP t1_irlu5th wrote

Abstract: >Brown adipose tissue (BAT) contributes to cardiometabolic health by taking up glucose and lipids for oxidation, a process that displays a strong diurnal rhythm. While aging has been shown to reduce thermogenic characteristics of BAT, it is as yet unknown whether this reduction is specific to the time of day. Therefore, we assessed whole-body and BAT energy metabolism in young and middle-aged male and female C57BL/6J mice and studied the consequences for lipid metabolism in humanized APOE*3-Leiden.CETP mice (also on a C57BL/6J background). We demonstrate that in middle-aged versus young mice body temperature is lower in both male and female mice, while uptake of triglyceride (TG)-derived fatty acids (FAs) by BAT, reflecting metabolic activity, is attenuated at its peak at the onset of the dark (wakeful) phase in female mice. This coincided with delayed plasma clearance of TG-rich lipoproteins and TG-depleted lipoprotein core remnants, and elevated plasma TGs at the same time point. Furthermore, middle-aged female mice showed increased adiposity, accompanied by lipid accumulation, increased expression of genes involved in lipogenesis, and reduced expression of genes involved in fat oxidation and the intracellular clock machinery in BAT. Peak abundance of lipoprotein lipase (LPL), a crucial regulator of FA uptake, was attenuated in BAT. Our findings suggest that LPL is a potential therapeutic target for restoring diurnal metabolic BAT activity, and that efficiency of strategies targeting BAT may be improved by including time of day as an important factor.